By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Ancient lake on Titan could have lasted thousands of years

    March 15, 2023

    Innermost TRAPPIST-1 exoplanet is hot and airless

    April 2, 2023

    UAE’s ‘Hope’ probe begins close encounters with martian moon Deimos

    April 24, 2023

    A view of 3 nested belts

    May 10, 2023
  • Space Flight

    On-time Artemis landings by SpaceX, Blue Origin potential, however face “nice challenges”

    October 27, 2023

    Lunar occultation of Venus 2023: When to see the planet disappear behind the moon

    November 8, 2023

    SpaceX Starship explodes after reaching house for the primary time

    November 20, 2023

    Progress MS-25 brings contemporary provides to house station crew

    December 3, 2023
  • Cosmology

    Have astronomers finally found a meteorite from outside the solar system?

    August 18, 2023

    The Sky This Week from August 25 to September 1: Saturn meets a Blue Super Moon

    August 25, 2023

    Did this Supernova Explode Twice?

    August 31, 2023

    TESS Finds a Planet That Takes 482 Days to Orbit, the Widest it’s Seen so Far

    September 6, 2023
  • Latest
  • About Us
Reading: With new experimental method, researchers probe spin structure in 2D materials for first time
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > With new experimental method, researchers probe spin structure in 2D materials for first time
Technology

With new experimental method, researchers probe spin structure in 2D materials for first time

By Aimee Daly May 11, 2023 6 Min Read
Share


By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two-dimensional electronics. Credit: Jia Li/Brown University

For two decades, physicists have tried to directly manipulate the spin of electrons in 2D materials like graphene. Doing so could spark key advances in the burgeoning world of 2D electronics, a field where super-fast, small and flexible electronic devices carry out computations based on quantum mechanics.

Standing in the way is that the typical way in which scientists measure the spin of electrons—an essential behavior that gives everything in the physical universe its structure—usually doesn’t work in 2D materials. This makes it incredibly difficult to fully understand the materials and propel forward technological advances based on them. But a team of scientists led by Brown University researchers believe they now have a way around this longstanding challenge. They describe their solution in a new study published in Nature Physics.

In the study, the team—which also include scientists from the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the University of Innsbruck—describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.

Called a coupling, the absorption of microwave photons by electrons establishes a novel experimental technique for directly studying the properties of how electrons spin in these 2D quantum materials—one that could serve as a foundation for developing computational and communicational technologies based on those materials, according to the researchers.

“Spin structure is the most important part of a quantum phenomenon, but we’ve never really had a direct probe for it in these 2D materials,” said Jia Li, an assistant professor of physics at Brown and senior author of the research. “That challenge has prevented us from theoretically studying spin in these fascinating material for the last two decades. We can now use this method to study a lot of different systems that we could not study before.”

The researchers made the measurements on a relatively new 2D material called “magic-angle” twisted bilayer graphene. This graphene-based material is created when two sheets of ultrathin layers of carbon are stacked and twisted to just the right angle, converting the new double-layered structure into a superconductor that allows electricity to flow without resistance or energy waste. Just discovered in 2018, the researchers focused on the material because of the potential and mystery surrounding it.

“A lot of the major questions that were posed in 2018 have still yet to be answered,” said Erin Morissette, a graduate student in Li’s lab at Brown who led the work.

Physicists usually use nuclear magnetic resonance or NMR to measure the spin of electrons. They do this by exciting the nuclear magnetic properties in a sample material using microwave radiation and then reading the different signatures this radiation causes to measure spin.

The challenge with 2D materials is that the magnetic signature of electrons in response to the microwave excitation is too small to detect. The research team decided to improvise. Instead of directly detecting the magnetization of the electrons, they measured subtle changes in electronic resistance, which were caused by the changes in magnetization from the radiation using a device fabricated at the Institute for Molecular and Nanoscale Innovation at Brown.

These small variations in the flow of the electronic currents allowed the researchers to use the device to detect that the electrons were absorbing the photos from the microwave radiation.

The researchers were able to observe novel information from the experiments. The team noticed, for instance, that interactions between the photons and electrons made electrons in certain sections of the system behave as they would in an anti-ferromagnetic system—meaning the magnetism of some atoms was canceled out by a set of magnetic atoms that are aligned in a reverse direction.

The new method for studying spin in 2D materials and the current findings won’t be applicable to technology today, but the research team sees potential applications the method could lead to in the future. They plan to continue to apply their method to twisted bilayer graphene but also expand it to other 2D material.

“It’s a really diverse toolset that we can use to access an important part of the electronic order in these strongly correlated systems and in general to understand how electrons can behave in 2D materials,” Morissette said.

More information:
Andrew Mounce, Dirac revivals drive a resonance response in twisted bilayer graphene, Nature Physics (2023). DOI: 10.1038/s41567-023-02060-0. www.nature.com/articles/s41567-023-02060-0

Provided by
Brown University


Citation:
With new experimental method, researchers probe spin structure in 2D materials for first time (2023, May 11)
retrieved 11 May 2023
from https://phys.org/news/2023-05-experimental-method-probe-2d-materials.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: experimental, materials, method, probe, Researchers, Spin, structure, time

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly May 11, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

On-time Artemis landings by SpaceX, Blue Origin potential, however face “nice challenges”

Space Flight
October 27, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Utilizing Good Supplies To Deploy A Darkish Age Explorer

One of the important constraints on the dimensions of objects positioned into orbit is the dimensions of the fairing used…

Cosmology
December 23, 2023

Historical stars may make components with greater than 260 protons

R-process nucleosynthesis. Credit score: Lawrence Livermore Nationwide Laboratory The primary stars of the universe have been monstrous beasts. Comprised solely…

News
December 23, 2023

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Hubble sights a galaxy with ‘forbidden’ mild

This NASA Hubble House Telescope picture incorporates a shiny spiral galaxy often called MCG-01-24-014, which is situated about 275 million…

News
December 22, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?