By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Track down a trio of great double stars – Astronomy Now

    February 27, 2023

    ‘Oumuamua a comet? Avi Loeb responds

    March 24, 2023

    Neptune Trojans now seen as redder

    April 11, 2023

    Early-universe prequel to a huge galaxy cluster

    May 3, 2023
  • Space Flight

    SpaceX launches v1.5 satellites from Vandenberg following debut of Starlink v2

    March 3, 2023

    Northern lights: The best pictures of the aurora taken across the UK

    February 28, 2023

    SpaceX Cargo Dragon spacecraft lifts off from Florida

    March 14, 2023

    Life on Titan: Quantum effects could be key to the chemistry of life on Saturn’s moon

    March 18, 2023
  • Cosmology

    A Tiny Telescope is Revealing “Sizzling Jupiter” Secrets and techniques

    December 15, 2023

    A New View of Uranus’ North Pole from JWST

    December 20, 2023

    How Supersymmetry Saved String Concept

    December 23, 2023

    The Sky This Month March 2023

    March 1, 2023
  • Latest
  • About Us
Reading: What are white dwarf stars? How do they form?
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Astronomy > What are white dwarf stars? How do they form?
Astronomy

What are white dwarf stars? How do they form?

By Aimee Daly April 25, 2023 9 Min Read
Share


Contents
How are white dwarf stars born? What are they made of?But not all white dwarfs go quietlySometimes a white dwarf ends up as supernovaChristopher CrockettAbout the Author:
View larger. | The Ring Nebula (M57) in the constellation Lyra shows the final stages of a star like our sun. The white dot in the center of this nebula is a white dwarf; it’s lighting up the receding cloud of gas that once made up the star. The colors identify various elements like hydrogen, helium, and oxygen. Image via The Hubble Heritage Team (AURA/ STScI/ NASA).

White dwarfs are the hot, dense remnants of long-dead stars. They are stellar cores, left behind when stars exhaust their fuel supplies and blow their gases into space. These objects mark the final stage of evolution for most stars, including our sun. Plus, they play a crucial role in helping us understand the evolution of the universe.

A single white dwarf contains roughly the mass of our sun, but in a volume comparable to Earth. Their small size makes white dwarfs difficult to find. No white dwarfs can be seen with the unaided eye.

The light they generate comes from the slow, steady release of incredible amounts of energy stored up during billions of years as a star’s nuclear powerhouse.

Help! EarthSky needs your support to continue. Our yearly crowd-funding campaign is going on now. Donate here.

How are white dwarf stars born?

White dwarfs are born when a star shuts down. A star spends most of its life in a balance between gravity and outward gas pressure. The weight of a couple octillion tons of gas pressing down onto the core causes hydrogen nuclei to fuse together, forming helium. This is called nuclear fusion. The steady release of thermonuclear energy from this process prevents the star from collapsing on itself.

But eventually, a star will run out of hydrogen in its center. At this point, it shifts to fusing helium into carbon and oxygen, and hydrogen fusion moves to a shell surrounding the core. The star inflates and becomes a red giant. For most stars – our sun included – this is the beginning of the end. The star expands, stellar winds blow at an increasingly ferocious rate, and its outer layers begin to escape the pull of gravity.

As the red giant star evaporates, it leaves behind its exposed core: a newly born white dwarf.

Huge brilliant blue-white star with lens flare rays coming out of it and tiny white dot next to it.
Hubble Space Telescope image of the sky’s brightest star Sirius (middle) and its faint white dwarf companion, Sirius B (lower left). Image via NASA/ ESA/ H. Bond (STScI)/ M. Barstow (University of Leicester).

What are they made of?

A newly born white dwarf consists of helium, carbon, and oxygen nuclei, swimming in a sea of highly energetic electrons. The combined pressure of the electrons holds up the white dwarf, so it doesn’t collapse into an even stranger entity like a neutron star or black hole.

The infant white dwarf is incredibly hot, so it bathes the space around it in ultraviolet light and X-rays. Some of this radiation is intercepted by the gas that the star released when it died. The gas responds by fluorescing with a rainbow of colors, creating a planetary nebula. These nebulae – like the Ring Nebula in the constellation Lyra the Harp – give us a peek into our sun’s future.

The white dwarf now has a long, quiet future ahead of it. As trapped heat trickles out, it slowly cools and dims. Eventually it will become an inert lump of carbon and oxygen floating invisibly in space: a black dwarf. However, the universe isn’t old enough for any black dwarfs to have formed. The white dwarfs born from the earliest generations of stars are still cooling off, 14-billion-years later. So the coolest white dwarfs we know of, with temperatures around 4,000 degrees Celsius (7,000 degrees Fahrenheit), may also be some of the oldest relics in the cosmos.

But not all white dwarfs go quietly

While solitary white dwarfs fade gradually, a white dwarf that orbits another star is highly explosive. It siphons gas from its companion, with hydrogen passing across a gaseous bridge and spilling onto the white dwarf’s surface. And as the hydrogen accumulates, its temperature and density eventually reaches a flash point. The entire shell of newly acquired fuel violently fuses and releases a tremendous amount of energy in a nova. The white dwarf flares briefly with the brilliance of 50,000 to 100,000 suns, and then slowly fades back into obscurity.

Two stars, with material sucked off a teardrop shaped one to form a disk around a tiny white dot.
Artist’s concept of a white dwarf siphoning gas off a binary companion into a disk of material. The stolen gas spirals through the disk and eventually crashes on to the white dwarf’s surface. Image via STScI.

Sometimes a white dwarf ends up as supernova

However, if the gas collects fast enough, it can push the white dwarf past a critical point. Then, rather than creating a thin shell of fusion, it brings the star suddenly back to life. Unregulated, the violent release of energy obliterates the stellar core in one of the most energetic events in the universe: a Type 1a supernova. The absolute luminosity of the supernova is 5-billion-times brighter than the sun. For weeks or months, it can outshine even an entire galaxy.

Very colorful ball of gas in space in dense star field.
SN 1572 is the remnant of a Type 1a supernova, 9,000 light-years from Earth, that Tycho Brahe observed 430 years ago. This composite X-ray and infrared image shows the remains of that explosion: an expanding shell of gas moving at roughly 9,000 km/second (over 20 million miles/hour)! Image via NASA/ MPIA/ Calar Alto Observatory/ Oliver Krause et al.

Such brilliance makes Type 1a supernovae visible from across the universe. Astronomers use them as standard candles to measure distances to the farthest reaches of the cosmos. Observations of detonating white dwarfs in distant galaxies led to a Nobel Prize-winning discovery: the expansion of the universe is accelerating. So dead stars have breathed life into our most fundamental assumptions about the nature of time and space.

Bottom line: A white dwarf is the incredibly dense core of a dead star, left behind when the star exhausted its fuel. Our sun will become a white dwarf one day.

Christopher Crockett

View Articles

About the Author:

Chris Crockett got his Ph.D. in astronomy from UCLA in 2011 and worked at Lowell Observatory and the U.S. Naval Observatory. He then realized he enjoyed talking about astronomy a lot more than actually doing it. After being awarded a Mass Media Fellowship in 2013 by the American Association for the Advancement of Science, he spent a summer writing for Scientific American, then went on to become the staff astronomy writer at Science News from 2014 – 2017. These days, he freelances, focusing on stories about astronomy, planetary science, and physics. His work has appeared in Science News, Scientific American, Smithsonian Magazine, Knowable, Sky & Telescope, and the American Physical Society’s online magazine Physics.

TAGGED: astronomy essentials, Dwarf, form, space, Stars, what are white dwarf stars?, White

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly April 25, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

SpaceX launches v1.5 satellites from Vandenberg following debut of Starlink v2

Space Flight
March 3, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered popping off alongside the jet…

Cosmology
October 27, 2024

Proposed CASTOR Area Telescope Waits on Authorities

The proposed Canadian led Cosmological Superior Survey Telescope for Optical and uv Analysis, generally referred to by its acronym CASTOR,…

News
October 27, 2024

A trio of elusive Native Group galaxies

IC 10 is a dwarf irregular galaxy that’s a member of our Native Group. Intense star formation right here results…

Astronomy
October 27, 2024

Historical stars may make components with greater than 260 protons

R-process nucleosynthesis. Credit score: Lawrence Livermore Nationwide Laboratory The primary stars of the universe have been monstrous beasts. Comprised solely…

News
December 23, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?