By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Icy moons’ puzzling features may be due to salty ice

    March 2, 2023

    Icy rain from Saturn’s rings heats its atmosphere

    March 30, 2023

    Is there a space race between the United States and China?

    April 16, 2023

    Rubin Observatory reaches major construction milestone

    May 8, 2023
  • Space Flight

    Launch day timeline for Relativity Space’s Terran 1 rocket

    March 8, 2023

    Mars rover sensors may not be sensitive enough to find signs of life

    February 21, 2023

    Axiom shows off Artemis moonsuits

    March 15, 2023

    Milky Way black hole: First picture was revealed in 2022

    December 22, 2022
  • Cosmology

    Can clouds of Moon dust help fight climate change on Earth?

    February 21, 2023

    These 5 impact craters highlight Earth’s wild history

    February 3, 2023

    Exploring Lava Tubes on Other Worlds Will Need Rovers That Can Work Together

    March 14, 2023

    JWST Sees Organic Molecules Swirling Around a Newborn Star

    March 21, 2023
  • Latest
  • About Us
Reading: Ultrahigh areal output voltage monolithically integrated micro-supercapacitors for powering miniaturized electronics
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Ultrahigh areal output voltage monolithically integrated micro-supercapacitors for powering miniaturized electronics
Technology

Ultrahigh areal output voltage monolithically integrated micro-supercapacitors for powering miniaturized electronics

By Aimee Daly February 28, 2023 4 Min Read
Share


(a) Schematic of the fabrication of M-MIMSCs. (b) Flexibility of M-MIMSCs on a flexible polyethylene terephthalate substrate. (c) Cycling stability for 4000 cycles tested at 2.7 μA of 60 cells connected in series under output voltage of 162 V in PVDF-HFP-EMIMBF4 gel electrolyte. Photo credit: Dr. Sen Wang and Dr. Linmei Li. Credit: Science China Press

To realize true Internet of Things in future, compact monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance along with cell number density will become indispensable for powering miniaturized electronics, but their scalable production is still challenging. Several limitations stand as the barriers in their path.

Depositing electrolytes precisely on densely-packed micro-supercapacitors (MSCs) while ensuring electrochemical isolation is one of the most formidable challenges to overcome. In addition, electrochemical performance may be significantly sacrificed during complex microfabrication procedures, and even then, performance uniformity among numerous individual cells is difficult to achieve.

To address these critical issues, Prof. Zhong-Shuai Wu and colleagues have developed an innovative and high-throughput strategy combining multi-step lithographic patterning, spray printing of MXene microelectrodes, and three-dimensional (3D) printing of gel electrolyte, for mass production of MIMSCs, simultaneously achieving superior cell number density and high systemic performance.

The team achieved the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition.

First, benefiting from the high-resolution of lithographic patterning and uniqueness of MXene nanosheets, super-dense microelectrode-arrays were fabricated, and each individual MXene-based MSC exhibits an extremely small footprint of 1.8 mm2, high areal capacitance of 4.1 mF cm-2, high volumetric capacitance of 457 F cm-3, and stable performance at ultrahigh scan rate up to 500 V s-1.

Second, they developed a simple, reliable and large throughput strategy for electrochemical isolation of individual units. For this a gel electrolyte ink compatible with novel 3D printing technique was designed rationally, enabling adjacent microcells to be electrochemically isolated at a close proximity of just 600 μm and provide outstanding performance uniformity.

Consequently, the researchers were able to obtain MIMSCs with a superior areal number density of 28 cells cm-2 (400 cells on 3.5×4.1 cm2), a record areal output voltage of 75.6 V cm-2, and an acceptable systemic volumetric energy density of 9.8 mWh cm-3, far exceeding those of the previously reported integrated MSCs.

Attributed to the reliability and uniformity of each step in the microfabrication processes including lithography, spray printing, lift-off and 3D printing, the resulting MSCs showed excellent performance consistency on a larger scale, and the MIMSCs demonstrate good capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V (see image c below).

“This innovative microfabrication strategy marks a great advance as a new technological platform for monolithic micropower sources and will aid the applications where compact integration and high systemic performance is demanded from energy storage units,” Wu says.

The paper is published in the journal National Science Review.

More information:
Sen Wang et al, Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage, National Science Review (2022). DOI: 10.1093/nsr/nwac271

Provided by
Science China Press


Citation:
Ultrahigh areal output voltage monolithically integrated micro-supercapacitors for powering miniaturized electronics (2023, February 28)
retrieved 8 March 2023
from https://phys.org/news/2023-02-ultrahigh-areal-output-voltage-monolithically.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: areal, electronics, integrated, microsupercapacitors, miniaturized, monolithically, output, powering, Ultrahigh, voltage

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly February 28, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Launch day timeline for Relativity Space’s Terran 1 rocket

Space Flight
March 8, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023

Scientists create chiral polyoxometalate-based frameworks with enhanced stability and catalytic exercise

The chiral POM-based frameworks have enhanced stability, chiral catalysis, chiral separation, and proton conductivity. Credit score: Polyoxometalates, Tsinghua College Press…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?