By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Will asteroid 2023DW strike Earth on Valentine’s Day 2046?

    March 9, 2023

    Europa’s icy crust rides on warm ocean currents

    March 27, 2023

    Webb provides a spectacular hint of future “Deep Field” images while probing the distant past

    April 14, 2023

    Webb serves up baby pictures of galaxy cluster in infant cosmos

    May 4, 2023
  • Space Flight

    SpaceX to launch Falcon 9 first-stage booster on record-breaking nineteenth flight

    December 23, 2023

    Weather forecast favorable for Relativity’s first orbital launch attempt

    March 6, 2023

    SpaceX launch scrapped at last minute leaving NASA astronauts grounded

    February 27, 2023

    Supernovae might be a good place to hunt for alien broadcasts

    January 26, 2023
  • Cosmology

    How Can We Bring Down the Costs of Large Space Telescopes?

    September 14, 2023

    JWST capture’s an infant star’s outflow

    September 18, 2023

    Why Build Megastructures? Just Move Planets Around to Make Habitable Worlds

    September 25, 2023

    Let the Robot Take the Wheel. Autonomous Navigation in Space

    September 30, 2023
  • Latest
  • About Us
Reading: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Tubular nanomaterial of carbon makes ideal home for spinning quantum bits
Technology

Tubular nanomaterial of carbon makes ideal home for spinning quantum bits

By Aimee Daly March 6, 2023 5 Min Read
Share


Artistic rendering of chemically modified carbon nanotube hosting a spinning electron as qubit. Credit: Argonne National Laboratory

Scientists are vigorously competing to transform the counterintuitive discoveries about the quantum realm from a century past into technologies of the future. The building block in these technologies is the quantum bit, or qubit. Several different kinds are under development, including ones that use defects within the symmetrical structures of diamond and silicon. They may one day transform computing, accelerate drug discovery, generate unhackable networks and more.

Working with researchers from several universities, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have discovered a method for introducing spinning electrons as qubits in a host nanomaterial. Their test results revealed record long coherence times—the key property for any practical qubit because it defines the number of quantum operations that can be performed in the lifetime of the qubit.

Electrons have a property analogous to the spin of a top, with a key difference. When tops spin in place, they can rotate to the right or left. Electrons can behave as though they were rotating in both directions at the same time. This is a quantum feature called superposition. Being in two states at the same time makes electrons good candidates for spin qubits.

Spin qubits need a suitable material to house, control and detect them, as well as read out information in them. With that in mind, the team chose to investigate a nanomaterial that is made from carbon atoms only, has a hollow tubular shape and has thickness of only about one nanometer, or a billionth of a meter, roughly 100,000 times thinner than the width of a human hair.

“These carbon nanotubes are typically a few micrometers long,” said Xuedan Ma. “They are mostly free of fluctuating nuclear spins that would interfere with the spin of the electron and reduce its coherence time.”

Ma is a scientist in Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science user facility. She also holds appointments at the Pritzker School of Molecular Engineering at the University of Chicago and Northwestern-Argonne Institute of Science and Engineering at Northwestern University.

The problem the team faced is that carbon nanotubes by themselves cannot maintain a spinning electron at one site. It moves about the nanotube. Past researchers have inserted electrodes nanometers apart to confine a spinning electron between them. But this arrangement is bulky, expensive and challenging to scale up.

The current team devised a way to eliminate the need for electrodes or other nanoscale devices for confining the electron. Instead, they chemically alter the atomic structure in a carbon nanotube in a way that traps a spinning electron to one location.

“Much to our gratification, our chemical modification method creates an incredibly stable spin qubit in a carbon nanotube,” said chemist Jia-Shiang Chen. Chen is a member of both CNM and a postdoctoral scholar in the Center for Molecular Quantum Transduction at Northwestern University.

The team’s test results revealed record long coherence times compared to those of systems made by other means—10 microseconds.

Given their small size, the team’s spin qubit platform can be more easily integrated into quantum devices and permits many possible ways to read out the quantum information. Also, the carbon tubes are very flexible and their vibrations can be used to store information from the qubit.

“It is a long way from our spin qubit in a carbon nanotube to practical technologies, but this is a large early step in that direction,” Ma said.

The team’s findings were reported in Nature Communications.

More information:
Jia-Shiang Chen et al, Long-lived electronic spin qubits in single-walled carbon nanotubes, Nature Communications (2023). DOI: 10.1038/s41467-023-36031-z

Provided by
Argonne National Laboratory


Citation:
An innovative twist: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits (2023, March 6)
retrieved 7 March 2023
from https://phys.org/news/2023-03-tubular-nanomaterial-carbon-ideal-home.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: bits, carbon, home, ideal, nanomaterial, quantum, spinning, Tubular

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 6, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

SpaceX to launch Falcon 9 first-stage booster on record-breaking nineteenth flight

Space Flight
December 23, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Dwelling (Alone) on Mars: Actor Daniel Stern on main NASA in ‘For All Mankind’

If there's certainly a multiverse the place in each attainable end result occurs, then in a type of universes Marv…

News
December 23, 2023

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?