By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    The magnificent Orion Nebula

    February 6, 2023

    ESA’s JUICE mission will explore Jupiter’s icy moons

    March 21, 2023

    Webb reveals new details – and new questions – about the Cas A supernova remnant

    April 8, 2023

    SpaceX debris’ fiery reentry over Arizona and Colorado

    April 27, 2023
  • Space Flight

    Uncrewed Soyuz MS-23 “rescue” mission arrives at ISS

    February 25, 2023

    NASA DART: What we learned from the asteroid-smashing mission

    March 1, 2023

    Sunquakes may be caused by weird beams of electrons from solar flares

    February 2, 2023

    JWST has taken astonishing images of debris orbiting a nearby star

    January 11, 2023
  • Cosmology

    DART mission confirms we could deflect deadly asteroids

    March 2, 2023

    The Sky This Week from February 10 to 17

    February 10, 2023

    Curiosity Sees Spectacular Crepuscular Rays in Martian Clouds

    March 8, 2023

    The Universe Sparkles in Gamma Rays in this New NASA Animation

    March 17, 2023
  • Latest
  • About Us
Reading: Scientists discover easy way to make atomically-thin metal layers for new technology
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Scientists discover easy way to make atomically-thin metal layers for new technology
Technology

Scientists discover easy way to make atomically-thin metal layers for new technology

By Aimee Daly March 24, 2023 6 Min Read
Share

[ad_1]

UChicago scientists discover easy way to make atomically-thin metal layers for new technology
A scanning electron microscopy image reveals the beautiful shapes of tiny structures known as MXenes, which are of interest to scientists for new devices and electronics but were previously hard to create. These were grown with a new easier and less toxic method invented by chemists with the University of Chicago. For reference, the diameter of a human hair is about 50 µm. Credit: Di Wang

The secret to a perfect croissant is the layers—as many as possible, each one interspersed with butter. Similarly, a new material with promise for new applications is made of many extremely thin layers of metal, between which scientists can slip different ions for various purposes. This makes them potentially very useful for future high-tech electronics or energy storage.

Until recently, these materials—known as MXenes, pronounced “max-eens”—were as labor-intensive as good croissants made in a French bakery.

But a new breakthrough by scientists with the University of Chicago shows how to make these MXenes far more quickly and easily, with fewer toxic byproducts.

Researchers hope the discovery, published March 23 in Science, will spur new innovation and pave the way towards using MXenes in everyday electronics and devices.

Atom economy

When they were discovered in 2011, MXenes made a lot of scientists very excited. Usually, when you shave a metal like gold or titanium to create atomic-thin sheets, it stops behaving like a metal. But unusually strong chemical bonds in MXenes allow them to retain the special abilities of metal, like conducting electricity strongly.

They’re also easily customizable: “You can put ions between the layers to use them to store energy, for example,” said chemistry graduate student Di Wang, co-first author of the paper along with postdoctoral scholar Chenkun Zhou.

All of these advantages could make MXenes extremely useful for building new devices—for example, to store electricity or to block electromagnetic wave interference.

However, the only way we knew to make MXenes involved several intensive chemical engineering steps, including heating the mixture at 3,000°F followed by a bath in hydrofluoric acid.

“This is fine if you’re making a few grams for experiments in the laboratory, but if you wanted to make large amounts to use in commercial products, it would become a major corrosive waste disposal issue,” explained Dmitri Talapin, the Ernest DeWitt Burton Distinguished Service Professor of Chemistry at the University of Chicago, joint appointee at Argonne National Laboratory and the corresponding author on the paper.

To design a more efficient and less toxic method, the team used the principles of chemistry—in particular “atom economy,” which seeks to minimize the number of wasted atoms during a reaction.

The UChicago team discovered new chemical reactions that allow scientists to make MXenes from simple and inexpensive precursors, without the use of hydrofluoric acid. It consists of just one step: mixing several chemicals with whichever metal you wish to make layers of, then heating the mixture at 1,700°F. “Then you open it up and there they are,” said Wang.

The easier, less toxic method opens up new avenues for scientists to create and explore new varieties of MXenes for different applications—such as different metal alloys or different ion flavorings. The team tested the method with titanium and zirconium metals, but they think the technique can also be used for many other different combinations.

“These new MXenes are also visually beautiful,” Wang added. “They stand up like flowers—which may even make them better for reactions, because the edges are exposed and accessible for ions and molecules to move in between the metal layers.”

Graduate student Wooje Cho was also a co-author on the paper. The exploration was made possible by help from UChicago colleagues across departments, including theoretical chemist Suri Vaikuntanathan, X-ray research facility director Alexander Filatov, and electrochemists Chong Liu and Mingzhan Wang of the Pritzker School of Molecular Engineering. Electron microscopy was performed by Robert Klie and Francisco Lagunas with the University of Illinois Chicago.

More information:
Di Wang et al, Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes, Science (2023). DOI: 10.1126/science.add9204

Daniel D. Robertson et al, A direct and clean route to MXenes, Science (2023). DOI: 10.1126/science.ade9914

Provided by
University of Chicago


Citation:
Scientists discover easy way to make atomically-thin metal layers for new technology (2023, March 24)
retrieved 24 March 2023
from https://phys.org/news/2023-03-scientists-easy-atomically-thin-metal-layers.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



[ad_2]

TAGGED: atomicallythin, discover, easy, layers, metal, Scientists, technology

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 24, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Uncrewed Soyuz MS-23 “rescue” mission arrives at ISS

Space Flight
February 25, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Historical stars may make components with greater than 260 protons

R-process nucleosynthesis. Credit score: Lawrence Livermore Nationwide Laboratory The primary stars of the universe have been monstrous beasts. Comprised solely…

News
December 23, 2023

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Hubble sights a galaxy with ‘forbidden’ mild

This NASA Hubble House Telescope picture incorporates a shiny spiral galaxy often called MCG-01-24-014, which is situated about 275 million…

News
December 22, 2023

Researchers use VLT exoplanet hunter to check Jupiter’s winds

Picture of Jupiter taken by NASA's Juno spacecraft in February 2022. The darkish spot is the shadow of the moon…

News
December 22, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?