By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    observe one of winter’s best planetary nebulae

    February 20, 2023

    Leo’s magical galaxy pairing

    March 27, 2023

    See Mercury’s sodium tail in specially filtered photographs

    April 11, 2023

    Black hole and its jet imaged together for 1st time

    May 2, 2023
  • Space Flight

    These are the next comets that will be visible in 2023

    September 29, 2023

    Leak detected onboard Russian section of Worldwide Area Station

    October 9, 2023

    SpaceX Falcon 9 to launch 21 Starlink satellites from California

    October 21, 2023

    Astrobotic’s Peregrine lander arrives in Florida forward of Christmas Eve Moon-bound launch

    November 1, 2023
  • Cosmology

    Yes! A JWST Image of the Ring Nebula

    August 4, 2023

    See the Perseid meteor shower this weekend

    August 10, 2023

    The Sun Gets Meteor Showers Too, But They’re Very Different

    August 16, 2023

    What Cassini taught us about Saturn

    August 22, 2023
  • Latest
  • About Us
Reading: Researchers develop highly-efficient, non-toxic method to upcycle single-use plastic
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Researchers develop highly-efficient, non-toxic method to upcycle single-use plastic
Technology

Researchers develop highly-efficient, non-toxic method to upcycle single-use plastic

By Aimee Daly March 6, 2023 5 Min Read
Share


Credit: Unsplash/CC0 Public Domain

A team of researchers at NYU Abu Dhabi has developed a single-step, organic solvent-free, hydrothermal process to convert polyethylene-based plastic bags and polypropylene-based surgical masks into carbon dots.

An estimated 26,000 metric tons of pandemic-related plastic waste—from medical waste to online shopping packaging—have been released into the world’s oceans, making it even more urgent to find efficient methods to upcycle this non-degradable material. One solution is to convert the single-use plastic into so-called carbon dots, carbon nanomaterials that are biocompatible, and have applications in the fields of biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis and therapy, and anti-counterfeiting. Existing methods to upcycle plastic into carbon dots involve multiple, time-consuming steps and utilize toxic chemicals.

In the study titled “High-yield, One-pot Upcycling of Polyethylene and Polypropylene Waste into Blue-Emissive Carbon Dots,” published in the journal Green Chemistry, the researchers present the development of a new synthesis method, which is a simple, cost-effective, and highly scalable approach to upcycling plastic waste.

Importantly, this oxidative degradation method can upcycle plastics contaminated with organic waste such as food scraps, which poses a significant challenge to traditional recycling technologies. The senior author is Khalil Ramadi, Assistant Professor of Bioengineering at NYUAD. Mohammed Abdelhameed, a scientist at NYUAD, and Mahmoud Elbeh, an NYUAD undergraduate student, are first authors of the study.

The researchers also estimated the economic feasibility of the synthetic method by comparing the variable costs of this process to existing chemical recycling processes, considering the economic value of the created carbon dots. They found that the global market value of carbon dots is expected to reach $6.412 billion U.S. dollars by 2025, up from $2.496 billion in 2019—a high commercial value that more than justifies the associated processing costs.

The high volume of single-use plastics used during the pandemic, particularly surgical masks and medical waste, presents an increased need to find a solution for managing non-biodegradable waste. It is also estimated that only 14 percent of the eligible plastic packaging—whose use has surged due to the boom in online shopping—is recycled, with the rest ending up in landfills and oceans, where it does considerable harm. These materials can be consumed by organisms or fragmented into micro- and nano-plastics that can threaten terrestrial, marine, and freshwater ecosystems and, ultimately, human health.

“The new method our team has developed is a cost-effective and safe method that can be easily implemented to significantly reduce the amount of harmful plastic that is released into our ecosystems,” said Ramadi. “In addition to providing a new tool to protect our ecosystems, this approach can efficiently and responsibly produce carbon dots, a versatile nanotechnology whose potential applications are nearly boundless.”

Elbeh stated, “We’re very delighted to further support the UAE’s Circular Economy Policy. Given that we are tackling the plastic waste crisis by creating a valuable product using a relatively easy-to-implement method, we’re looking forward to more collaborations to not only scale up this project but also utilize the produced dots for further development and applications.”

More information:
Mohammed Abdelhameed et al, High-yield, one-pot upcycling of polyethylene and polypropylene waste into blue-emissive carbon dots, Green Chemistry (2023). DOI: 10.1039/D2GC04177D

Provided by
New York University


Citation:
Researchers develop highly-efficient, non-toxic method to upcycle single-use plastic (2023, March 6)
retrieved 7 March 2023
from https://phys.org/news/2023-03-highly-efficient-non-toxic-method-upcycle-single-use.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: develop, highlyefficient, method, nontoxic, plastic, Researchers, singleuse, upcycle

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 6, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

These are the next comets that will be visible in 2023

Space Flight
September 29, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Researchers use VLT exoplanet hunter to check Jupiter’s winds

Picture of Jupiter taken by NASA's Juno spacecraft in February 2022. The darkish spot is the shadow of the moon…

News
December 22, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Researchers examine 1,000,000 galaxies to learn the way the universe started

by Kavli Institute for the Physics and Arithmetic of the Universe, The College of Tokyo Determine 1: A picture obtained…

News
December 22, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?