By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Tau Boötis’ pole flip was 15 years ago

    March 12, 2023

    Giant exoplanet has 2 suns and swirling sand

    April 5, 2023

    What are coronal mass ejections? Strong eruptions on the sun

    April 24, 2023

    Catch the rays from the Sunflower Galaxy

    May 10, 2023
  • Space Flight

    Galaxies’ missing matter may be found – but now there’s too much of it

    March 6, 2023

    Weird dust ring orbits the sun alongside Mercury and we don’t know why

    February 8, 2023

    Rocket Lab deploys two Capella radar satellites after launch from Virginia

    March 16, 2023

    NASA’s Perseverance rover recorded the sound of a dust devil on Mars

    December 13, 2022
  • Cosmology

    A New Technique Confirms the Universe is 69% Dark Energy, 31% Matter (Mostly Dark)

    September 17, 2023

    NASA’s Perseverance Rover is Setting Records on Mars

    September 21, 2023

    NASA Opens the Lid on OSIRIS-REx’s Sample Capsule

    September 27, 2023

    We Don’t Know Enough About the Biomedical Challenges of Deep Space Exploration

    October 3, 2023
  • Latest
  • About Us
Reading: Novel porous materials are ideal for metal-air batteries, researchers report
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Novel porous materials are ideal for metal-air batteries, researchers report
Technology

Novel porous materials are ideal for metal-air batteries, researchers report

By Aimee Daly March 7, 2023 5 Min Read
Share

[ad_1]

Novel porous materials are ideal for metal-air batteries, researchers report
In a review of the current state of structurally diverse metal-organic frameworks and covalent organic frameworks with unique electrical properties, researchers have found they offer “great potential” for facilitating the necessary reactions for metal-air batteries. Credit: Nano Research Energy, Tsinghua University Press

Sustainable energy solutions cannot be pulled out of thin air. However, combining air with metal and other frameworks may pave the way for environmentally friendly energy conversion and storage, according to a research team based in China.

They published their review of novel porous materials—called metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)—and their potential to advance metal-air batteries in Nano Research Energy.

The porous crystal material frameworks comprise various arrangements of bonded materials that can induce desired properties, including the ability to accelerate reactions between oxygen and metals for energy conversion and storage. Their diverse arrangements facilitate flexibility, with high porosity and surface area, allowing for the best chance of the necessary reactions. Their derivates, or products derived from the frameworks, also enhance previously insufficient electronic conductivity and improve chemical stability.

But their advancement has been limited by inadequate conductivity and stability, according to co-corresponding author Tao Wang, professor, Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics.

“Metal-air batteries, with high specific energy, moderate pricing, high safety and environmental friendliness, are the most promising candidate for energy storage and conversion,” Wang said. “At present, however, metal-air batteries involve a complex catalytic process of gas-liquid-solid phases, making it difficult to deeply understand the mechanism of discharge and recharge processes.”

Wang also noted that some of the MOF and COF arrangements have slow reaction kinetics, meaning an efficient catalyst is needed both to reduce potential conversion challenges and improve the battery’s life cycle.

To better understand how to control benefits—and mitigate the challenges—of the frameworks and their derivates, the researchers reviewed the current available scientific literature. Among other insights, they found that the frameworks exhibit a unique molecular structure that enables high porosity with uniform distribution of catalytic sites, meaning their reactions can be more predictable than with other porous materials.

“By systematically studying the effects between organic components and catalytic active centers of MOFs and COFs, we can gain a theoretical basis for us to select and synthesize the desired framework catalysts in the future,” Wang said. “We can also better understand the local microenvironment in MOFs and COFs and how it impacts the overall catalytic effect.”

Wang and the team recommend further study of how to better prepare functionalized MOFs and COFs based on their reaction mechanism; of hybrid MOFs and COFs; and of the composition control and morphology of MOF and COF derivates. They also recommend developing more advanced techniques to detect the vibration signals of molecules on the electrode surface and observe the conversion process to fully elucidate the relationship between the structure and the performance.

“By comprehensively reviewing the advantages, challenges and prospects of MOFs and COFs, we hope that the organic framework materials will shed more profound insights into the development of electrocatalysis and energy storage in the future,” Wang said.

More information:
Yunyun Xu et al, Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries, Nano Research Energy (2023). DOI: 10.26599/NRE.2023.9120052

Provided by
Tsinghua University Press

Citation:
Novel porous materials are ideal for metal-air batteries, researchers report (2023, March 7)
retrieved 7 March 2023
from https://phys.org/news/2023-03-porous-materials-ideal-metal-air-batteries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



[ad_2]

TAGGED: batteries, ideal, materials, metalair, porous, report, Researchers

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 7, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Galaxies’ missing matter may be found – but now there’s too much of it

Space Flight
March 6, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Utilizing Good Supplies To Deploy A Darkish Age Explorer

One of the important constraints on the dimensions of objects positioned into orbit is the dimensions of the fairing used…

Cosmology
December 23, 2023

Historical stars may make components with greater than 260 protons

R-process nucleosynthesis. Credit score: Lawrence Livermore Nationwide Laboratory The primary stars of the universe have been monstrous beasts. Comprised solely…

News
December 23, 2023

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

NASA report research choices for a future nationwide laboratory in orbit after ISS

SANTA FE, N.M. — A NASA examine examined a number of choices for persevering with a nationwide laboratory in low…

News
December 22, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?