By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Icy moons’ puzzling features may be due to salty ice

    March 2, 2023

    Icy rain from Saturn’s rings heats its atmosphere

    March 30, 2023

    Is there a space race between the United States and China?

    April 16, 2023

    Rubin Observatory reaches major construction milestone

    May 8, 2023
  • Space Flight

    Launch day timeline for Relativity Space’s Terran 1 rocket

    March 8, 2023

    Mars rover sensors may not be sensitive enough to find signs of life

    February 21, 2023

    Axiom shows off Artemis moonsuits

    March 15, 2023

    Milky Way black hole: First picture was revealed in 2022

    December 22, 2022
  • Cosmology

    ALMA Takes Subsequent-Stage Pictures of a Protoplanetary Disk

    November 18, 2023

    Wow. JWST Simply Discovered Methane in an Exoplanet Ambiance

    November 22, 2023

    The numerous mysteries NASA can remedy on a mission to Uranus

    November 28, 2023

    Ought to We Ship People to Europa?

    December 1, 2023
  • Latest
  • About Us
Reading: ‘Inkable’ nanomaterial promises big benefits for bendable electronics
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > ‘Inkable’ nanomaterial promises big benefits for bendable electronics
Technology

‘Inkable’ nanomaterial promises big benefits for bendable electronics

By Aimee Daly March 21, 2023 6 Min Read
Share

[ad_1]

Contents
Sky’s the limit with spray-on electronicsWhat is zinc oxide and how can it be used?Next steps
'Inkable' nanomaterial promises big benefits for bendable electronics
Graphical abstract . Credit: Chemical Reviews (2022). DOI: 10.1021/acs.chemrev.2c00456

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, zinc oxide, could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

Professor Silvia Gross from the University of Padova in Italy and Associate Professor Kevin Kittilstved from the University of Massachusetts Amherst in the United States are co-authors.

“Progress in nanotechnology has enabled us to greatly improve and adapt the properties and performances of zinc oxide by making it super small, and with well-defined features,” said Della Gaspera, from RMIT’s School of Science.

“Tiny and versatile particles of zinc oxide can now be prepared with exceptional control of their size, shape and chemical composition at the nanoscale,” said van Embden, also from RMIT’s School of Science.

“This all leads to precise control of the resulting properties for countless applications in optics, electronics, energy, sensing technologies and even microbial decontamination.”

Sky’s the limit with spray-on electronics

The zinc oxide nanocrystals can be formulated into ink and deposited as an ultra-thin coating. The process is like ink-jet printing or airbrush painting, but the coating is hundreds to thousands of times thinner than a conventional paint layer.

“These coatings can be made highly transparent to visible light, yet also highly electrically conductive—two fundamental characteristics needed for making touchscreen displays,” Della Gaspera said.

The nanocrystals can also be deposited at low temperature, allowing coatings on flexible substrates, such as plastic, that are resilient to flexing and bending, the team says.

The team is ready to work with industry to explore potential applications using their techniques to make these nanomaterial coatings.

What is zinc oxide and how can it be used?

Zinc is an abundant element in the Earth’s crust and more abundant than many other technologically relevant metals, including tin, nickel, lead, tungsten, copper and chromium.

“Zinc is cheap and widely used by various industries already, with global annual production in the millions of tons,” van Embden said.

Zinc oxide is an extensively studied material, with initial scientific studies being conducted from the beginning of the 20th century.

“Zinc oxide gained a lot of interest in the 1970s and 1980s due to progress in the semiconductor industry. And with the advent of nanotechnology and advancement in both syntheses and analysis techniques, zinc oxide has rapidly risen as one of the most important materials of this century,” Della Gaspera said.

Zinc oxide is also safe, biocompatible and found already in products such as sunscreens and cosmetics.

Potential applications, other than bendable electronics, that could use zinc oxide nanocrystals include:

  • self-cleaning coatings
  • antibacterial and antifungal agents
  • sensors to detect ultraviolet radiation
  • electronic components in solar cells and light emitting devices (LED)
  • transistors, which are miniature components that control electrical signals and are the foundation of modern electronics
  • sensors that could be used to detect harmful gases for residential, industrial and environmental applications.

Next steps

Scaling up the team’s approach from the lab to an industrial setting would require working with the right partners, Della Gaspera said.

“Scalability is a challenge for all types of nanomaterials, zinc oxide included,” he said.

“Being able to recreate the same conditions that we achieve in the laboratory, but with much larger reactions, requires both adapting the type of chemistry used and engineering innovations in the reaction setup.”

In addition to these scalability challenges, the team needs to address the shortfall in electrical conductivity that nanocrystal coatings have when compared to industrial benchmarks, which rely on more complex physical depositions. The intrinsic structure of the nanocrystal coatings, which enables more flexibility, limits the ability of the coating to conduct electricity efficiently.

“We and other scientists around the world are working towards addressing these challenges and good progress is being made,” Della Gaspera said.

He sees great opportunities to collaborate with other organizations and industry partners to tackle these kinds of challenges.

“I am confident that, with the right partnership, these challenges can be solved,” Della Gaspera said.

The RMIT team has contributed to other peer-reviewed research on zinc oxide nanocrystals in recent years, including:

More information:
Joel van Embden et al, Colloidal Approaches to Zinc Oxide Nanocrystals, Chemical Reviews (2022). DOI: 10.1021/acs.chemrev.2c00456

Provided by
RMIT University


Citation:
‘Inkable’ nanomaterial promises big benefits for bendable electronics (2023, March 21)
retrieved 21 March 2023
from https://phys.org/news/2023-03-inkable-nanomaterial-big-benefits-bendable.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



[ad_2]

TAGGED: bendable, benefits, big, electronics, Inkable, nanomaterial, promises

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 21, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Launch day timeline for Relativity Space’s Terran 1 rocket

Space Flight
March 8, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023

Scientists create chiral polyoxometalate-based frameworks with enhanced stability and catalytic exercise

The chiral POM-based frameworks have enhanced stability, chiral catalysis, chiral separation, and proton conductivity. Credit score: Polyoxometalates, Tsinghua College Press…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?