By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    200-foot asteroid 2023 DZ2 to pass closer than moon

    March 17, 2023

    Navigate a new Mars map of craters and volcanoes

    April 6, 2023

    Martian moon Deimos image reveals far side for 1st time

    April 25, 2023

    Jammed radar boom on Jupiter-bound Juice probe finally freed

    May 12, 2023
  • Space Flight

    Hubble Space Telescope images are being spoiled by satellite trails

    March 2, 2023

    Crew Dragon splashes down to close out 157-day mission

    March 12, 2023

    Rocket Lab’s Electron deploys two Capella radar satellites

    March 17, 2023

    NASA’s Artemis I mission has ended as Orion splashed down on Earth

    December 11, 2022
  • Cosmology

    Why are small black holes more dangerous than big ones?

    February 14, 2023

    Want Artemis to Succeed? Virtual Reality Can Help

    March 9, 2023

    Planets Might Protect their Water Until their Star Settles Down

    March 17, 2023

    Hypervelocity Stars Teach us About Black Holes and Supernovae

    March 23, 2023
  • Latest
  • About Us
Reading: How NASA’s Roman Space Telescope will rewind the universe
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > News > How NASA’s Roman Space Telescope will rewind the universe
News

How NASA’s Roman Space Telescope will rewind the universe

By Jayden Hanson March 2, 2023 9 Min Read
Share


Contents
Unraveling the cosmic webSeeing the bigger picture
This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. It would take Hubble about 85 years to map the entire region shown in the image at the same depth, but Roman could do it in just 63 days. Roman’s larger view and fast survey speeds will unveil the evolving universe in ways that have never been possible before. Credit: NASA’s Goddard Space Flight Center and A. Yung

A new simulation shows how NASA’s Nancy Grace Roman Space Telescope will turn back the cosmic clock, unveiling the evolving universe in ways that have never been possible before when it launches by May 2027. With its ability to rapidly image enormous swaths of space, Roman will help us understand how the universe transformed from a primordial sea of charged particles to the intricate network of vast cosmic structures we see today.

“The Hubble and James Webb Space Telescopes are optimized for studying astronomical objects in depth and up close, so they’re like looking at the universe through pinholes,” said Aaron Yung, a postdoctoral fellow at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who led the study. “To solve cosmic mysteries on the biggest scales, we need a space telescope that can provide a far larger view. That’s exactly what Roman is designed to do.”

Combining Roman’s large view with Hubble’s broader wavelength coverage and Webb’s more detailed observations will offer a more comprehensive view of the universe.

The simulation covers a two-square-degree patch of the sky, which is equivalent to about 10 times the apparent size of a full moon, containing over 5 million galaxies. It’s based on a well-tested galaxy formation model that represents our current understanding of how the universe works. Using an extremely efficient technique, the team can simulate tens of millions of galaxies in less than a day—something that could take years using conventional methods.

When Roman launches and begins delivering real data, scientists can compare it to a range of such simulations, putting their models to the ultimate test. That will help unravel galaxy formation physics, dark matter—a mysterious substance observed only through its gravitational effects—and much more.

A paper describing the results was published in the Monthly Notices of the Royal Astronomical Society in December 2022.

Unraveling the cosmic web

Galaxies and galaxy clusters glow in clumps along invisible threads of dark matter in a tapestry the size of the observable universe. With a broad enough view of that tapestry, we can see that the large-scale structure of the universe is web-like, with strands that extend hundreds of millions of light-years. Galaxies are primarily found at intersections of the filaments, with vast “cosmic voids” between all the shining strands.

That’s how the cosmos looks now. But if we could rewind the universe, we would see something very different.

Instead of giant, blazing stars sparsely scattered throughout galaxies that are each separated by even more immense distances, we would find ourselves submerged in a sea of plasma (charged particles). This primordial soup was almost completely uniform, but thankfully for us, there were tiny knots. Since those clumps were slightly denser than their surroundings, they had slightly larger gravitational pull.







In this side view of the simulated universe, each dot represents a galaxy whose size and brightness corresponds to its mass. Slices from different epochs illustrate how Roman will be able to view the universe across cosmic history. Astronomers will use such observations to piece together how cosmic evolution led to the web-like structure we see today. Credit: NASA’s Goddard Space Flight Center and A. Yung

Over hundreds of millions of years, the clumps drew in more and more material. They grew large enough to form stars, which were gravitationally drawn toward the dark matter that forms the invisible backbone of the universe. Galaxies were born and continued to evolve, and eventually planetary systems like our own emerged.

Roman’s panoramic view will help us see what the universe was like at different stages and fill in many gaps in our understanding. For example, while astronomers have discovered “halos” of dark matter enveloping galaxies, they’re not sure how they formed. By seeing how gravitational lensing caused by dark matter warps the appearance of farther objects, Roman will help us see how the halos developed over cosmic time.

“Simulations like these will be crucial in connecting unprecedented large galaxy surveys from Roman to the unseen scaffolding of dark matter that determines the distribution of those galaxies,” said Sangeeta Malhotra, an astrophysicist at Goddard and a co-author of the paper.

Seeing the bigger picture

Studying such vast cosmic structures with other space telescopes isn’t practical because it would take hundreds of years of observations to stitch together enough images to see them.

“Roman will have the unique ability to match the depth of the Hubble Ultra Deep Field, yet cover several times more sky area than wide surveys such as the CANDELS survey,” Yung said. “Such a full view of the early universe will help us understand how representative Hubble and Webb’s snapshots are of what it was like then.”

Roman’s broad view will also serve as a road map Hubble and Webb can use to zoom in on interesting areas.

Roman’s sweeping celestial surveys will be able to map the universe up to a thousand times faster than Hubble. That will be possible because of the observatory’s rigid structure, fast slewing speed, and the telescope’s large field of view. Roman will move rapidly from one cosmic target to the next. Once a new target is acquired, vibrations will settle down quickly because potentially wobbly structures like the solar arrays are fixed in place.

“Roman will take around 100,000 pictures every year,” said Jeffrey Kruk, a research astrophysicist at Goddard. “Given Roman’s larger field of view, it would take longer than our lifetimes even for powerful telescopes like Hubble or Webb to cover as much sky.”

By providing a gigantic, crisp view of cosmic ecosystems and teaming up with observatories like Hubble and Webb, Roman will help us solve some of the most profound mysteries in astrophysics.

More information:
L Y Aaron Yung et al, Semi-analytic forecasts for Roman—the beginning of a new era of deep-wide galaxy surveys, Monthly Notices of the Royal Astronomical Society (2022). DOI: 10.1093/mnras/stac3595

Provided by
NASA’s Goddard Space Flight Center


Citation:
How NASA’s Roman Space Telescope will rewind the universe (2023, March 2)
retrieved 7 March 2023
from https://phys.org/news/2023-03-nasa-roman-space-telescope-rewind.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: NASAs, rewind, Roman, space, telescope, universe

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Jayden Hanson March 2, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Hubble Space Telescope images are being spoiled by satellite trails

Space Flight
March 2, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Proposed CASTOR Area Telescope Waits on Authorities

The proposed Canadian led Cosmological Superior Survey Telescope for Optical and uv Analysis, generally referred to by its acronym CASTOR,…

News
October 27, 2024

Dwelling (Alone) on Mars: Actor Daniel Stern on main NASA in ‘For All Mankind’

If there's certainly a multiverse the place in each attainable end result occurs, then in a type of universes Marv…

News
December 23, 2023

China Spacewalk: Photo voltaic Panel Restore Check

Picture credit score: China Nationwide Area Administration (CNSA)/China Central Tv (CCTV) The primary extravehicular exercise of the Shenzhou-17 mission was…

News
December 23, 2023

Watch large loop of plasma dance above the solar in gorgeous video

Miguel Claro is an expert photographer, writer and science communicator primarily based in Lisbon, Portugal, who creates spectacular pictures of…

News
December 23, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?