By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    200-foot asteroid 2023 DZ2 to pass closer than moon

    March 17, 2023

    Navigate a new Mars map of craters and volcanoes

    April 6, 2023

    Martian moon Deimos image reveals far side for 1st time

    April 25, 2023

    Jammed radar boom on Jupiter-bound Juice probe finally freed

    May 12, 2023
  • Space Flight

    Hubble Space Telescope images are being spoiled by satellite trails

    March 2, 2023

    Crew Dragon splashes down to close out 157-day mission

    March 12, 2023

    Rocket Lab’s Electron deploys two Capella radar satellites

    March 17, 2023

    NASA’s Artemis I mission has ended as Orion splashed down on Earth

    December 11, 2022
  • Cosmology

    If Our A part of the Universe is Much less Dense, Would That Clarify the Hubble Pressure?

    December 8, 2023

    Entropy is the Key to a Planet’s Habitability

    December 14, 2023

    The Holographic Secret of Black Holes

    December 18, 2023

    Ouch. Canadarm2 Took a Direct Hit From a Micrometeorite

    December 22, 2023
  • Latest
  • About Us
Reading: First real-time glimpse of nanoparticles self-assembling into crystals
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > First real-time glimpse of nanoparticles self-assembling into crystals
Technology

First real-time glimpse of nanoparticles self-assembling into crystals

By Aimee Daly March 30, 2023 8 Min Read
Share


Liquid-phase TEM video of layer-by-layer growth of a crystal with smooth surface from gold concave nanocubes. Surface particles on the growing crystal are tracked (center positions overlaid with yellow dots). Credit: Erik Luijten and Qian Chen

For the first time ever, researchers have watched the mesmerizing process of nanoparticles self-assembling into solid materials. In the stunning new videos, particles rain down, tumble along stairsteps and slide around before finally snapping into place to form a crystal’s signature stacked layers.

Led by Northwestern University and the University of Illinois, Urbana-Champaign, the research team says these new insights could be used to design new materials, including thin films for electronic applications.

The research will be published on March 30 in the journal Nature Nanotechnology.

Described by the researchers as an “experimental tour de force,” the study used a newly optimized form of liquid-phase transmission electron microscopy (TEM) to gain unprecedented insights into the self-assembly process. Before this work, researchers have used microscopy to watch micron-sized colloids—which are 10 to 100 times larger than nanoparticles—self-assemble into crystals. They also have used X-ray crystallography or electron microscopy to visualize single layers of atoms in a crystalline lattice. But they were unable to watch atoms individually move into place.

“We know that atoms use a similar scheme to assemble into crystals, but we have never seen the actual growth process,” said Northwestern’s Erik Luijten, who led the theoretical and computational work to explain the observations. “Now we see it coming together right in front of our eyes. By viewing nanoparticles, we are watching particles that are larger than atoms, but smaller than colloids. So, we have completed the whole spectrum of length scales. We are filling in the missing length.”






Liquid-phase TEM video of layer-by-layer growth of a crystal with smooth surface from gold concave nanocubes. Surface particles on the growing crystal are tracked (center positions overlaid with yellow dots). Credit: Erik Luijten and Qian Chen

“Previously, our team resolved the mystery of nucleation, namely how the embryos of crystals composed of tens of nanoparticles are formed, which follows a nonclassical pathway in solution,” said Illinois’ Qian Chen, who led the experimental work. “With recent advances in liquid-phase TEM and data science, in this work, we are now able to capture and track motions of thousands of nanoparticles over time. These nanoparticles wiggle in solution and grow into crystals of various morphologies like polyhedral or wedding cake.”

Luijten is a professor of materials science and engineering at Northwestern’s McCormick School of Engineering, where he also is an associate dean. Chen is an associate professor of materials science and engineering at Illinois.

Most people are familiar with crystals in the forms of salt, sugar, snowflakes and sparkling gems, such as diamonds. Although crystallization is a ubiquitous phenomenon, exactly how crystals form has remained a mystery. The building blocks—atoms, molecules or ions—that compose crystalline materials are highly ordered, forming lattices of equally spaced building blocks. These lattices then stack on top of each other to form a three-dimensional solid material.

“The stacking of atoms into regular arrangements is the reason that crystals have smooth, flat faces,” Luijten said. “That’s why they break along straight edges.”

Up until now, researchers have studied crystallization by examining much larger particles called colloids. But watching colloids self-arrange into crystals did not give insights into how atoms behave. Whereas crystals have flat, uniform surfaces, crystalline structures made from micron-sized colloids tend to adopt non-uniform, rough surfaces.

“Colloids are so much larger than atoms that it is doubtful they follow the same steps when crystallizing,” Luijten said. “So, they do not teach us what atoms do. The analogy of colloids to atoms doesn’t really hold.”






Animation illustrating in-plane and out-of-plane growth modes for crystals of gold concave nanocubes inside a liquid-phase transmission electron microscope (TEM) chamber. Credit: Erik Luijten and Qian Chen

To glean deeper insights into the crystallization process, Luijten, Chen and their teams turned to nanoparticles. Recent advances to improve liquid-phase TEM have made it possible to view nanoparticles in real time as they form solid materials. Chen’s team spent years optimizing the process to ensure the electron beam could view the particles without damaging them. In the new study, the researchers used differently shaped nanoparticles—cubes, spheres and indented cubes—to explore how shape affects behavior.

The researchers first visualized crystal formation with advanced computer simulations, which were performed by Northwestern graduate students Ziwei Wang and Garrett Watson as well as postdoctoral fellow Tine Curk. Then they performed experiments with liquid-phase TEM to watch the nanoparticles self-assemble in real time. In the experiments, the researchers noticed the particles collided into each other, sticking together to form layers. Then, to form the layer-by-layer crystalline structure, the particles first formed a horizontal layer and then stacked vertically. Sometimes, after sticking to each other, the particles briefly detached to fall onto a layer below.

“They run along and then hesitate at the edge before falling,” Luijten said. “It’s like a diver hesitating at the edge of a diving board. I can’t believe we can actually see this. We have never seen the actual growth process before—only the result.”

Luijten said this information will help engineers design new materials. The insight specifically could help with the design of thin-film materials, which are often used to build flexible electronics, light-emitting diodes, transistors and solar cells.

“Knowing how particles come together will enable us to control the shape of a surface,” Luijten said. “Do you want a flat or rough surface? Changing particle shape or how fast the particles fall can affect the surface.”

More information:
Erik Luijten, Unravelling crystal growth of nanoparticles, Nature Nanotechnology (2023). DOI: 10.1038/s41565-023-01355-w. www.nature.com/articles/s41565-023-01355-w

Provided by
Northwestern University


Citation:
First real-time glimpse of nanoparticles self-assembling into crystals (2023, March 30)
retrieved 30 March 2023
from https://phys.org/news/2023-03-real-time-glimpse-nanoparticles-self-assembling-crystals.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: crystals, glimpse, nanoparticles, realtime, selfassembling

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 30, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Hubble Space Telescope images are being spoiled by satellite trails

Space Flight
March 2, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023

Scientists create chiral polyoxometalate-based frameworks with enhanced stability and catalytic exercise

The chiral POM-based frameworks have enhanced stability, chiral catalysis, chiral separation, and proton conductivity. Credit score: Polyoxometalates, Tsinghua College Press…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?