By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    New comet – C/2023 A3 – could be bright in 2024

    March 3, 2023

    Supermassive black holes not impressive enough? Try the ultramassive version

    March 29, 2023

    Lyrids meteor shower makes a welcome return

    April 17, 2023

    Can aliens around nearby stars detect us?

    May 4, 2023
  • Space Flight

    Relativity Space set for maiden launch of Terran 1 rocket

    March 8, 2023

    Crew Dragon Endurance set for return to Earth on Crew-5 mission

    March 10, 2023

    Galaxy may have eaten all its neighbours and now it’s all alone

    March 15, 2023

    2023 news preview: The biggest science stories of next year

    December 22, 2022
  • Cosmology

    Atwood’s flash | Astronomy.com

    February 22, 2023

    The cubic centimeter: A cosmic measuring cup

    March 6, 2023

    Will we ever figure out how to defy gravity?

    March 14, 2023

    Sci-Fi Christmas is Ruined! Planet Vulcan Doesn’t Exist

    March 20, 2023
  • Latest
  • About Us
Reading: Finding the right twist in nanophysics
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Finding the right twist in nanophysics
Technology

Finding the right twist in nanophysics

By Aimee Daly March 28, 2023 7 Min Read
Share


Characteristics of MoSe2–WSe2 HBLs in H- and R-type stacking. a, Schematics of H- and R-type heterostacks with ideal moiré (left) and periodically reconstructed (right) patterns. The colored regions represent high-symmetry atomic registries, as illustrated in the respective circles. b, Optical micrograph of sample 1 with H- and R-stacks (delimited by dashed lines) of CVD-grown MoSe2 monolayers (small triangles) on a large WSe2 monolayer (large triangle). c, Interlayer exciton PL map (left) with selected bright (H1, R1) and dark (H2, R2) spots indicated by diamonds and circles, respectively, as well as Pc (middle) and Pl (right) maps for the H and R-stacks in b. d,e, Photoluminescence spectra at the bright and dark spots marked in c. At an excitation power of 2 μW, the H1 and R1 spectra are representative for regions with a single bright peak, whereas the H2 and R2 spectra (scaled by 50 and 5, respectively) are characteristics of dark regions with broad and structured PL, which evolves into narrow peaks at a low excitation power of 0.01 μW (scaled by 250 and 25, respectively). All spectroscopy data were recorded on sample 1. f,g, Scanning electron micrographs of H- (f) and R- (g) heterostacks recorded with secondary electron imaging. Credit: Nature Nanotechnology (2023). DOI: 10.1038/s41565-023-01356-9

Novel, ultrathin nanomaterials exhibit remarkable properties. If you stack individual atomically thin layers of crystals in a vertical assembly, for example, fascinating physical effects can occur. For instance, bilayers of the wonder material graphene twisted by the magic angle of 1.1 degrees may exhibit superconductivity. And researchers are also focusing their attention on bilayer semiconducting heterostructures made of so-called transition metal dichalcogenides, which are held together weakly by van der Waals forces.

The research group led by Alexander Högele investigates such novel heterostructures, which do not occur in nature. “The combination of materials, the number of layers, and their relative orientation give rise to a wide variety of novel phenomena,” says the LMU physicist.

“In the lab, we can tailor physical phenomena for various applications in electronics, photonics, or quantum technology with properties that are unknown in naturally occurring crystals.” Experimentally observed phenomena are not always easy to interpret, however, as a new paper published in the journal Nature Nanotechnology demonstrates.

Högele’s team investigated a heterobilayer system held together by van der Waals forces and fabricated from semiconductor monolayers of molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). Depending on the orientation of the individual layers, moiré effects can emerge.

These effects, which we are familiar with from everyday life, also arise in the nano-world when two different atomic lattices are stacked upon each other, or two identical lattices are twisted with respect to each other. The difference in the nano case is that it is not an optical effect. In the quantum mechanical world of atomically thin crystal heterostructures, moiré interference dramatically affects the properties of the composite system, also impacting electrons and strongly bound electron-hole pairs, or excitons, explains Högele.

“Our work shows that the naïve notion of a perfect moiré pattern in heterobilayer MoSe2-WSe2 does not necessarily hold true, particularly for small angles of rotation. Therefore, the interpretation of the phenomenology observed to date will have to be partially revised,” says Högele. Instead of periodic moiré patterns, there are laterally extended areas that are free from moiré interferences.

Moreover, there are zones with interesting quantum mechanical effects such as one-dimensional quantum wires or quasi zero-dimensional quantum dots that are potentially viable for applications in quantum communication based on spatially localized excitons with single-photon emission characteristics. In the latter case, ideal moiré patterns presumably transform into periodic patterns with triangular or hexagonal tiling.

The reason seems to lie in an elastic deformation of the lattice structure that depends on the orientation of the layers. The atoms are displaced out of their equilibrium positions, which comes at the expense of increased strain in individual layers but promotes better adhesion among the layers.

The result is an energy landscape in the heterobilayer system that can be engineered and potentially exploited by means of rational design. “We also observe collective phenomena in synthetic crystals, where periodic moiré patterns have a dramatic effect on the motion of electrons as well as their mutual interactions,” says Högele.

Of decisive importance is the understanding of excitons—electron-hole pairs—that are characteristic for the distinct types of atomic registries in bilayer crystal heterostructures and which could potentially be utilized in future opto-electronic applications. These excitons are generated in semiconducting transition metal dichalcogenides by means of light absorption, and convert back into light again.

“Excitons thus act as mediators of light-matter interaction in semiconductor crystals,” says Högele. As the current paper shows, different types of excitons arise depending on the actual structure of the heterobilayer systems in parallel or antiparallel alignment. “We want to learn how to manufacture van der Waals heterostructures with customized properties in a deterministic approach to control the rich emergent phenomenology of correlated effects such as magnetism or superconductivity.”

More information:
Shen Zhao et al, Excitons in mesoscopically reconstructed moiré heterostructures, Nature Nanotechnology (2023). DOI: 10.1038/s41565-023-01356-9

Provided by
Ludwig Maximilian University of Munich


Citation:
Finding the right twist in nanophysics (2023, March 28)
retrieved 28 March 2023
from https://phys.org/news/2023-03-nanophysics.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: finding, nanophysics, twist

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 28, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Relativity Space set for maiden launch of Terran 1 rocket

Space Flight
March 8, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023

Scientists create chiral polyoxometalate-based frameworks with enhanced stability and catalytic exercise

The chiral POM-based frameworks have enhanced stability, chiral catalysis, chiral separation, and proton conductivity. Credit score: Polyoxometalates, Tsinghua College Press…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?