By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Round sand dunes on Mars puzzle scientists

    March 10, 2023

    The brightest gamma ray burst ever observed defies long-standing models

    April 4, 2023

    New protoplanet discovered 374 light-years away

    April 19, 2023

    The Drake Equation and the late planet

    May 9, 2023
  • Space Flight

    Relativity Space: First 3D-printed rocket is about to launch into space

    March 7, 2023

    The Longest Goodbye review: A poignant documentary on space psychology

    February 15, 2023

    Rocket Lab launches pair of Capella satellites from Wallops

    March 16, 2023

    Twin planets orbiting a distant star may be half water

    December 15, 2022
  • Cosmology

    What is a UFO? Interest continues to rise over unidentified craft

    February 17, 2023

    Snapshot: Feather-shaped cloud soars over Mars

    March 9, 2023

    It’s Time to Start Planning Your 2023/2024 Eclipse Adventures

    March 15, 2023

    A New Mission Will Search for Habitable Planets at Alpha Centauri

    March 21, 2023
  • Latest
  • About Us
Reading: Fast radio bursts used as ‘searchlights’ to detect gas in Milky Way
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > News > Fast radio bursts used as ‘searchlights’ to detect gas in Milky Way
News

Fast radio bursts used as ‘searchlights’ to detect gas in Milky Way

By Jayden Hanson March 30, 2023 8 Min Read
Share


An illustration of a radio signal from a fast radio burst as it moves toward telescopes on Earth. Credit: J. Josephides/Swinburne University of Technology, with minor edits from the Dunlap Institute

University of Toronto researcher Amanda Cook has found a way to use bright signals coming from across the universe to weigh the atmosphere of the Milky Way galaxy.

The radio signals she used come from the astronomical phenomenon known as fast radio bursts (FRBs)—enigmatic celestial objects that generate brief flashes of radio waves and are considered one of the biggest mysteries in astronomy.

Since an FRB simultaneously generates both high frequency radio waves (the equivalent of blue light) and low frequency radio waves (the equivalent of redlight), the different colors of radio waves might be expected to arrive at a telescope at the same time. But that’s not what happens. As an FRB passes through gas, it slows down—more so for the high frequencies than the low frequencies. The result is a delay between the different frequencies or colors reaching our telescope, effectively smearing the radio burst’s signal out in time.

Astronomers like Cook call this smearing “dispersion” and are able to use it as a tool to detect otherwise invisible gas throughout the cosmos.

“Using smearing to study the universe is like using your home heating bill to work out what the weather must have been like over the winter,” says Cook, who is a Ph.D. candidate in the David A. Dunlap department of astronomy and astrophysics, and the Dunlap Institute for Astronomy & Astrophysics, in the Faculty of Arts & Science.

“In the same way that your heating bill tells you whether it was a harsh winter or a mild winter—but not what the temperature was like on any individual date—the smearing that we see allows us to infer the total amount of material that the FRB signal has encountered on its journey from the FRB to Earth. It just can’t tell us how that material was distributed along the way.”

“The key thing is that regardless of how gas in front of the FRB is distributed, an FRB signal that is smeared more by the time it reaches our telescopes must be produced by an FRB that is farther away in the same way that an expensive heating bill must have meant a cold winter overall,” she continues.

In this case, Cook used the dispersion method to measure how much gas is present in the Milky Way’s halo—an “atmosphere” of the Milky Way that extends outwards by around a half a million light-years in all directions.

Using FRB signals collected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope, Cook and her team discovered that the Milky Way’s halo contains much less gas than previous models had predicted. The results were published in the Astrophysical Journal in a study titled “An FRB Sent Me a DM.”

Though there had been earlier studies applying related techniques, this is the first time that the halo’s gas has been measured using a large uniform sample of FRBs—thanks to the CHIME telescope.

The team used FRB signals at different distances from Earth to get the result. Cook likens this approach to trying to work out the average driving distance from different Canadian border crossings to Toronto by having friends from different American states drive to Toronto, telling you only the total distance they drove. The information from your Texan friend is not going to be particularly useful, but the experience from your Michigan and New York friends may be far more insightful. And if you have friends that live right on the border, in Buffalo or Detroit, then their answers will pretty much give you the information you need.

Cook and her supervisor, Professor Bryan Gaensler, have been working on this research since she was a first-year graduate student. “It ended up being a lot more difficult than we thought,” Cook says.

It was difficult enough that she, Gaensler and their colleagues actually stepped outside of conventional astronomical models. They turned to researchers in an entirely different field—statistics—and asked those colleagues for a new set of methods to apply to their approach.

“This is an exciting new way of studying our Milky Way,” says Gaensler, who is also an author on the publication. “We’re still trying to figure out what fast radio bursts actually are, but in the meantime we can use them as searchlights to study things much closer to home.”

Cook and Gaensler note that FRB signals could be used to study the structure of everything that the FRB signal passes through on its long journey, including the material between galaxies, the halos of other galaxies and the gas inside of galaxies.

Meanwhile, many more FRB discoveries are anticipated. With even more data, Cook and her team hope to create a 3D map of the Milky Way halo. “Each FRB gives us a measurement of the Milky Way halo in one direction, so as we continue to collect them, we can build up a detailed picture,” Cook says.

Beyond that, she notes that these clues contribute to our understanding of the early universe.

“Improving our knowledge of the Milky Way halo helps us learn about the formation of our galaxy as a whole.”

More information:
Amanda M. Cook et al, An FRB Sent Me a DM: Constraining the Electron Column of the Milky Way Halo with Fast Radio Burst Dispersion Measures from CHIME/FRB, The Astrophysical Journal (2023). DOI: 10.3847/1538-4357/acbbd0

Provided by
University of Toronto


Citation:
Fast radio bursts used as ‘searchlights’ to detect gas in Milky Way (2023, March 30)
retrieved 2 April 2023
from https://phys.org/news/2023-03-fast-radio-searchlights-gas-milky.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: bursts, detect, Fast, gas, Milky, Radio, searchlights

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Jayden Hanson March 30, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Relativity Space: First 3D-printed rocket is about to launch into space

Space Flight
March 7, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Proposed CASTOR Area Telescope Waits on Authorities

The proposed Canadian led Cosmological Superior Survey Telescope for Optical and uv Analysis, generally referred to by its acronym CASTOR,…

News
October 27, 2024

Dwelling (Alone) on Mars: Actor Daniel Stern on main NASA in ‘For All Mankind’

If there's certainly a multiverse the place in each attainable end result occurs, then in a type of universes Marv…

News
December 23, 2023

China Spacewalk: Photo voltaic Panel Restore Check

Picture credit score: China Nationwide Area Administration (CNSA)/China Central Tv (CCTV) The primary extravehicular exercise of the Shenzhou-17 mission was…

News
December 23, 2023

Watch large loop of plasma dance above the solar in gorgeous video

Miguel Claro is an expert photographer, writer and science communicator primarily based in Lisbon, Portugal, who creates spectacular pictures of…

News
December 23, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?