Unlikely to be a coincidence
However, the critical clue was that FRBs trace the total amount of gas they have passed through. We know this because high-frequency radio waves travel faster through the gas than low-frequency waves, so the time difference between them tells us the amount of gas.
Because we know the average gas density of the universe, we can relate this gas content to distance, which is known as the Macquart relation. And the distance travelled by FRB 20190425A was a near-perfect match for the distance to GW190425. Bingo!
So have we discovered the source of all FRBs? No. There are not enough merging neutron stars in the Universe to explain the number of FRBs — some must still come from magnetars, like SGR 1935+2154 did.
And even with all the evidence, there’s still a one in 200 chance this could all be a giant coincidence. However, LIGO and two other gravitational wave detectors, Virgo, and KAGRA, will turn back on in May this year, and be more sensitive than ever, while CHIME and other radio telescopes are ready to immediately detect any FRBs from neutron star mergers.
In a few months, we may find out if we’ve made a key breakthrough — or if it was just a flash in the pan.
Clancy W. James would like to acknowledge Alexandra Moroianu, the lead author of the study; his co-authors, Linqing Wen, Fiona Panther, Manoj Kovalem (University of Western Australia), Bing Zhang and Shunke Ai (University of Nevada); and his late mentor, Jean-Pierre Macquart, who experimentally verified the gas-distance relation, which is now named after him.
Clancy William James, Senior Lecturer (astronomy and astroparticle physics), Curtin University
This article is republished from The Conversation under a Creative Commons license. Read the original article.