By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Tau Boötis’ pole flip was 15 years ago

    March 12, 2023

    Giant exoplanet has 2 suns and swirling sand

    April 5, 2023

    What are coronal mass ejections? Strong eruptions on the sun

    April 24, 2023

    Catch the rays from the Sunflower Galaxy

    May 10, 2023
  • Space Flight

    Galaxies’ missing matter may be found – but now there’s too much of it

    March 6, 2023

    Weird dust ring orbits the sun alongside Mercury and we don’t know why

    February 8, 2023

    Rocket Lab deploys two Capella radar satellites after launch from Virginia

    March 16, 2023

    NASA’s Perseverance rover recorded the sound of a dust devil on Mars

    December 13, 2022
  • Cosmology

    Black holes formally spin! | Astronomy.com

    November 20, 2023

    Have a good time November’s Full Beaver Moon

    November 24, 2023

    Astronomers uncover disk round star in one other galaxy

    November 29, 2023

    Eris Could possibly be Slushier Than Pluto

    December 2, 2023
  • Latest
  • About Us
Reading: Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for tissue regeneration
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Technology > Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for tissue regeneration
Technology

Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for tissue regeneration

By Aimee Daly March 14, 2023 7 Min Read
Share


Composite scaffolds with load-bearing frameworks and aligned nanofibrous architectures were hybrid manufactured by combining techniques of 3D printing, electrospinning, unidirectional freeze-casting, and lyophilization. In the composite scaffolds, the 3D-printed frameworks provided sufficient mechanical strength for counteracting biological loads in vivo, while the embedded nanofibrous architectures with unidirectional micropores provided additional sites and guidance for directed cellular infiltration. Credit: By Zijie Meng, Xingdou Mu, Jiankang He, Juliang Zhang, Rui Ling and Dichen Li.

The existing 3D-printed scaffolds commonly possess a thick feature size of hundreds of micrometers, which is too large for most cells (10–20 μm) to attach and proliferate for promoting tissue regeneration. Researchers from Xi’an Jiaotong University have developed a novel hybrid manufacturing technique for the fabrication of composite scaffolds with 3D-printed macroscale frameworks and aligned nanofibrous architectures to improve cellular organizations.

Publishing in the journal International Journal of Extreme Manufacturing, the team led by researchers based at State Key Laboratory for Manufacturing Systems Engineering combined the techniques of 3D printing, electrospinning, unidirectional freeze-casting, and lyophilization to embed ECM-biomimetic fibrillar architectures inside previously 3D-printed scaffolds.

Compared with 3D-printed scaffolds, the developed composite scaffolds with hierarchical structures were able to improve the seeding efficiency, proliferation rate, and morphogenesis of the seeded cells, and guide the directional cellular ingrowth. The findings could have a widespread impact on the development of composite scaffolds with hierarchical architectures potentially for the orderly spatial regeneration and remodeling of tissues in the future.

One of the lead researchers, Professor Jiankang He, commented, “The emergence of 3D printing technologies has enabled the rapid and customized fabrication of porous scaffolds with designer structural and mechanical properties, exhibiting great potential for various tissue repairing applications and future clinical usage.

Nevertheless, one of the challenges of current 3D-printed scaffolds is the relatively large feature size, which limited the cell attachment and growth for the formation of dense cellular constructs for promoting tissue reconstruction. Given the widespread medical and scientific importance of 3D printing, it is truly important to enhance the capability of 3D-printed scaffolds to meet the pressing needs of facilitating tissue regeneration.

One of the promising directions is to incorporate additional micro/nanoscale architectures inside the macroscale 3D-printed scaffolds as ECM alternatives for cellular colonization, organization, and maturation.

“Currently, few techniques can be utilized to introduce collagen-like micro/nanofibers within existing porous scaffolds due to the shielding effects of the existing architectures,” First author Dr. Zijie Meng said.

“In our work, we show that ECM-mimetic fibrillar architectures could be incorporated into the 3D-printed scaffolds by freeze-casting the perfused short nanofiber suspensions into solid and then remove the ice via freeze-drying. Nanofibrillar architectures with aligned orientation can be obtained under the guidance of a unidirectional temperature gradient, which might be useful for promoting infiltration and migration of surrounding cells. By changing the freezing temperature, the median pore area of the nanofibrous architectures can be further controlled from c.a. 400 μm2 to 4000 μm2.”

This novel combination allowed them to produce additional topological cues within mechanically-robust 3D-printed scaffolds. By seeding cells on the composite scaffolds with aligned nanofibrous architectures in vitro, researchers were able to understand the effect of the pore size of the aligned nanofibrillar architectures on cellular attachment, proliferation, and directed infiltration.

The existence of nanofibrous architectures was found to significantly improve the cell seeding efficiency, proliferation rate, and directed cellular migration, as compared with pure 3D-printed scaffolds with large pore sizes and thick filaments.

Co-first author Miss Xingdou Mu at the Air Force Medical University added, “The composite scaffolds can provide volume-stable environments, enable directed cellular infiltration for tissue regeneration, and support the adipogenic maturation of ADSCs in vitro. Especially, the 3D-printed frameworks provided the majority of the mechanical support capacity of the composite scaffolds, while the cellular responses were found to be directly influenced by the embedded nanofibrous architectures.”

“Additionally, when implanted into a subcutaneous model of rats, the composite scaffolds with aligned nanofibrous architectures can guide directed tissue infiltration and effectively promote nearby neovascularization, which might be helpful for the long-term survival of the regenerated tissues.”

The team studied a hybrid manufacturing strategy that is promising for composite scaffold production with hierarchical structures, and the experimental technology they have developed can be used for many different applications.

Co-corresponding author Professor Juliang Zhang said, “The host tissues were able to gradually infiltrate into the composite scaffolds along the direction of aligned nanofibrous structures, with the 3D-printed PCL frameworks contributing to the shape retention of the regenerated tissues. In the future, the feasibility to arrange cellular organization by changing the local orientation of nanofibrous micropores need further and deeper investigation, which might be potentially used for more complex and aligned tissue regeneration such as the tendon, ligament, nerve, and cardiac muscles.”

More information:
Zijie Meng et al, Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration, International Journal of Extreme Manufacturing (2023). DOI: 10.1088/2631-7990/acbd6c

Provided by
International Journal of Extreme Manufacturing

Citation:
Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for tissue regeneration (2023, March 14)
retrieved 14 March 2023
from https://phys.org/news/2023-03-embedding-aligned-nanofibrous-architectures-3d-printed.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: 3Dprinted, aligned, architectures, Embedding, nanofibrous, polycaprolactone, regeneration, scaffolds, tissue

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 14, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Galaxies’ missing matter may be found – but now there’s too much of it

Space Flight
March 6, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Staff develops transistors with sliding ferroelectricity based mostly on polarity-switchable molybdenum disulfide

Credit score: Yang et al. (Nature Electronics, 2023). Over the previous few years, engineers have been making an attempt to…

Technology
December 23, 2023

Unimolecular self-assembled hemicyanine-oleic acid conjugate acts to eradicate most cancers stem cells: Research

Schematic illustration of unimolecular self-assembled CyOA NPs enhanced phototoxicity to CSCs by implementing oxygen-economical PDT. Credit score: Analysis Most cancers…

Technology
December 22, 2023

Nanotechnology approaches for creating biodeterioration-resistant wooden

chematic illustration of methods utilized for growth of biodeterioration-resistant wooden. Credit score: Ayyoob Arpanaei a,*, Qiliang Fu a,b, Tripti Singh…

Technology
December 21, 2023

Scientists create chiral polyoxometalate-based frameworks with enhanced stability and catalytic exercise

The chiral POM-based frameworks have enhanced stability, chiral catalysis, chiral separation, and proton conductivity. Credit score: Polyoxometalates, Tsinghua College Press…

Technology
December 21, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?