By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    The magnificent Orion Nebula

    February 6, 2023

    ESA’s JUICE mission will explore Jupiter’s icy moons

    March 21, 2023

    Webb reveals new details – and new questions – about the Cas A supernova remnant

    April 8, 2023

    SpaceX debris’ fiery reentry over Arizona and Colorado

    April 27, 2023
  • Space Flight

    Uncrewed Soyuz MS-23 “rescue” mission arrives at ISS

    February 25, 2023

    NASA DART: What we learned from the asteroid-smashing mission

    March 1, 2023

    Sunquakes may be caused by weird beams of electrons from solar flares

    February 2, 2023

    JWST has taken astonishing images of debris orbiting a nearby star

    January 11, 2023
  • Cosmology

    DART mission confirms we could deflect deadly asteroids

    March 2, 2023

    The Sky This Week from February 10 to 17

    February 10, 2023

    Curiosity Sees Spectacular Crepuscular Rays in Martian Clouds

    March 8, 2023

    The Universe Sparkles in Gamma Rays in this New NASA Animation

    March 17, 2023
  • Latest
  • About Us
Reading: Astronomers detect radio recombination lines of carbon/oxygen ions for first time
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > News > Astronomers detect radio recombination lines of carbon/oxygen ions for first time
News

Astronomers detect radio recombination lines of carbon/oxygen ions for first time

By Jayden Hanson March 6, 2023 6 Min Read
Share


First detection of radio recombination lines of carbon/oxygen using TMRT. The white line shows the RRLs of ions of C and/or O detected by TMRT. The green areas are the modeled emission of ion RRLs. The green dotted lines are the modeled emission, taking into account all RLLs and molecular lines. The background is the image of the heart-shaped Orion nebula (M42), with Orion KL located within the lower-left bright region of M42, credit to Shawn Nielsen. Credit: SHAO

A research team from the Shanghai Astronomical Observatory (SHAO) of the Chinese Academy of Sciences has detected radio recombination lines (RRLs) of ions heavier than helium for the first time, using the TianMa 65-m Radio Telescope (TMRT). These lines were assigned to carbon and/or oxygen ions.

The findings were published in Astronomy & Astrophysics on Feb. 28.

Ionized gas is the most widely distributed interstellar gas component and an important laboratory for measuring the abundance of elements. Radio recombination lines (RRLs) can avoid the difficulties of optical line observations, since RRLs are usually optically thin and have well understood emission mechanisms.

However, detected RRL emitters have nearly all been neutral atoms so far. Only two RRL transitions (121α and 115α) of helium ions in planetary nebulae have been previously reported. Line blending makes the RRLs of atoms heavier than helium difficult to spectrally resolve. In contrast, the RRLs of ions are not generally blended with RRLs of neutral atoms, making the former a much more powerful tool for measuring abundance.

The researchers made this new discovery while searching for interstellar emission lines as part of an ongoing TMRT spectral line survey toward Orion KL. While identifying the Ka-band (26–35 GHz) spectral lines of Orion KL, they found several broad line features that could not be assigned to any molecular species nor to the RRLs of atoms.

“These line features have weak intensities, but are already significant enough to be distinguished due to the high sensitivity of the spectrum. Because their line widths are similar to those of H/He RRLs, we realized that those line features could be RRLs of ions,” said Dr. Liu Xunchuan from SHAO, corresponding and first author of the study.

To confirm this, the astronomers conducted follow-up Ku-band (12–18 GHz) observations using TMRT to search for signals of ion RRLs at the expected frequencies, and eight more alpha lines (RRLs with Δn=1) of ions were detected.

In addition, they found marginal signals of alpha lines in the Q band and beta lines (Δn=2) in the Ka band. They compared the spectra obtained on different days and found that the frequencies of the line features remained unchanged when corrected for the motion of the Earth, confirming that the ion RRLs originated from space.

In total, tens of RRLs of interstellar ions were detected by TMRT, and many of them are not blended with any transitions of molecules nor with RRLs of atoms. The lines detected by TMRT are more than 20 kilometers per second bluer than the expected frequencies of helium ion RRLs and were thus assigned to ions heavier than helium. The abundance of the doubly ionized elements associated with those ion RRLs was accurately determined to be 8.8 parts per 10,000, which is consistent with the value of carbon/oxygen estimated from optical/infrared observations.

Previously, RRLs were commonly defined as radio spectral lines, caused by transitions of high-n levels of atoms, that appeared after the recombination of singly ionized ions and electrons. But now, the researchers have detected tens of unblended ion RRLs simultaneously.

“Such a new technique would be very valuable to study the abundances of carbon and oxygen, the most important constituents of carbon monoxide and interstellar complex organic molecules, in the inner Galaxy, where optical observations are very difficult,” said Prof. Neal J. Evans II from the University of Texas at Austin.

SHAO researchers see this new discovery by TMRT as the first of many. “The ongoing TMRT spectral line survey towards Orion KL and other Galactic objects will reach an unprecedented line sensitivity, which will lead to more new discoveries such as RRLs of heavy ions, new transitions of molecular lines and even new molecule species,” said Liu Tie, a researcher in SHAO and co-corresponding author of the study.

More information:
Xunchuan Liu et al, First detection of radio recombination lines of ions heavier than helium, Astronomy & Astrophysics (2023). DOI: 10.1051/0004-6361/202345904

Provided by
Chinese Academy of Sciences


Citation:
Astronomers detect radio recombination lines of carbon/oxygen ions for first time (2023, March 6)
retrieved 6 March 2023
from https://phys.org/news/2023-03-astronomers-radio-recombination-lines-carbonoxygen.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



TAGGED: astronomers, carbonoxygen, detect, ions, lines, Radio, recombination, time

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Jayden Hanson March 6, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Uncrewed Soyuz MS-23 “rescue” mission arrives at ISS

Space Flight
February 25, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Proposed CASTOR Area Telescope Waits on Authorities

The proposed Canadian led Cosmological Superior Survey Telescope for Optical and uv Analysis, generally referred to by its acronym CASTOR,…

News
October 27, 2024

Dwelling (Alone) on Mars: Actor Daniel Stern on main NASA in ‘For All Mankind’

If there's certainly a multiverse the place in each attainable end result occurs, then in a type of universes Marv…

News
December 23, 2023

China Spacewalk: Photo voltaic Panel Restore Check

Picture credit score: China Nationwide Area Administration (CNSA)/China Central Tv (CCTV) The primary extravehicular exercise of the Shenzhou-17 mission was…

News
December 23, 2023

Watch large loop of plasma dance above the solar in gorgeous video

Miguel Claro is an expert photographer, writer and science communicator primarily based in Lisbon, Portugal, who creates spectacular pictures of…

News
December 23, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?