By using this site, you agree to the Privacy Policy and Terms of Use.
Accept

Science, Space & Technology

Space Science Digital
Contact
Search
  • Home
  • Environment

    Innermost TRAPPIST-1 exoplanet is hot and airless

    April 2, 2023

    UAE’s ‘Hope’ probe begins close encounters with martian moon Deimos

    April 24, 2023

    A view of 3 nested belts

    May 10, 2023

    1st-ever Mars livestream! Watch it here

    June 2, 2023
  • Space Flight

    Earth is hurtling into a new region of interstellar space. What now?

    February 15, 2023

    Falcon 9 ready for first of two SpaceX launches planned Friday

    March 17, 2023

    Virgin Orbit pauses operations amid financial troubles

    March 20, 2023

    Bluewalker 3 satellite is brighter than 99.8 per cent of visible stars

    November 25, 2022
  • Cosmology

    Water’s Epic Journey to Earth Began Before the Sun Formed

    March 10, 2023

    Prelude to a Supernova: The James Webb Captures a Rare Wolf-Rayet Star

    March 15, 2023

    Fly Around Jezero Crater on Mars in This New Video

    March 23, 2023

    JWST Trappist-1 Data, Earth-Sized Rogue Planet, Vulcan Delay

    April 2, 2023
  • Latest
  • About Us
Reading: Asteroid Ryugu samples found to contain uracil, a key component of RNA
Share
Aa
Space Science DigitalSpace Science Digital
  • Environment
  • Space Flight
  • Cosmology
  • Technology
Search
  • Home
  • Categories
    • Environment
    • Technology
    • Cosmology
    • Space Flight
  • More Foxiz
    • Blog Index
    • Forums
    • Complaint
    • Sitemap
Follow US
© 2023 Space Science Digital. All Rights Reserved.
Space Science Digital > Blog > Cosmology > Asteroid Ryugu samples found to contain uracil, a key component of RNA
Cosmology

Asteroid Ryugu samples found to contain uracil, a key component of RNA

By Aimee Daly March 22, 2023 6 Min Read
Share


Contents
Building blocksAsteroid RyuguThe big picture

How did life come about? The answer to this question goes to the very heart of our existence on planet Earth.

Did life simply arise from chemical reactions among organic compounds in a primordial soup left after Earth clumped together from space rubble? If so, where did the organic compounds come from?

Some of the so-called “building blocks of life” may have been surprisingly common in the early solar system.

A team of Japanese and American scientists led by Yasuhiro Oba has analyzed samples taken from the asteroid Ryugu in 2018 by the Hayabusa2 mission and found uracil, one of the five key bases of the RNA and DNA molecules that are crucial to life as we know it. Their study is published today in Nature Communications.

Building blocks

At the most basic level, the development of life is a matter of combining simple organic molecules into increasingly complex compounds that can participate in the myriad reactions associated with a living organism.

Simple amino acids are believed to act as building blocks in the construction of these more complex molecules. But this isn’t just a simple random combination exercise.

The largest “chunk” of the human genome, chromosome 1, is made up of 249 million base pairs (the rungs on the twisted ladder of the DNA molecule). Each base pair is made of two bases: either guanine and cytosine, or adenine and thymine.

Building from the simple base pair chemicals to a full strand of DNA is a massive undertaking. A strand of DNA also has a complex structure, which varies from one individual to another. Life on Earth uses the structure of DNA to memorize the construction of the life form involved.

Alongside DNA, life uses a molecule called RNA for making proteins and doing other odds jobs inside cells. RNA is also made of a long string of bases: guanine, cytosine and adenine (like DNA), but instead of thymine it has uracil — which is what turned up in the sample from Ryugu.

Asteroid Ryugu

Ryugu is what’s called a C-type or carbonaceous asteroid. These are the most common type in the asteroid belt, making up about 75 percent of the asteroids we can see.

The Hayabusa2 mission established that C-type asteroids like Ryugu are the source of a kind of rare meteorite sometimes found on Earth, called a carbonaceous chondrite.

Uracil and other organic molecules have previously been found in these meteorites, but there has been no way to rule out the possibility that some of the molecules had a terrestrial origin. The meteorite samples could have been contaminated here on Earth, or their chemistry might have been changed by heating as they fell through the atmosphere.

However, since the Ryugu sample was taken from the surface of an asteroid and brought back in a tightly sealed container, scientists are confident it is free of contamination or any effects of coming to Earth.

Furthermore, the presence of these amino acids on Ryugu shows that even on asteroid surfaces, exposed to solar wind, micrometeorites, and cosmic rays, organic molecules can survive transportation through the solar system.

A huge variety of different organic compounds have already been found in Ryugu samples.

Many organic molecules, such as amino acids, come in two forms: left-handed and right-handed. Life on Earth relies on left-handed amino acids, but both forms are equally common in Ryugu samples – which indicates the molecules found on Ryugu are not signs of life.

The big picture

The solar system formed around 4.57 billion years ago from a molecular dust cloud that was exposed to UV radiation and particle bombardment from protons.

The molecular cloud contained simple molecules such as methane (CH₄), water (H₂O), and ammonia (NH₃). These would have been fragmented by the radiation, and the fragments would have reassembled into more complex molecules such as amino acids.

C-type asteroids like Ryugu are believed to have formed so far from the Sun that the water and carbon dioxide they contain would have remained frozen. However, as the asteroids warmed up and the ice melted, liquid water would have been able to react with the rocks and minerals.

Whether these conditions led to the creation of more complex organic molecules is an open question, but certainly these conditions would be conducive to further reactions. In addition, these conditions could affect the survival of different compounds.

The Hayabusa2 samples from Ryugu provide a new context for understanding the origin of organic compounds that may have been the start of life on Earth. It is still a big step from having these organic compounds available to early Earth, and the formation of life itself.


Trevor Ireland, Professor, School of Earth and Environmental Sciences, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.



TAGGED: asteroid, building blocks of life in space, component, key, origin of organic molecules, RNA, Ryugu, ryugu samples, samples, uracil, uracil asteroid

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
[mc4wp_form]
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Aimee Daly March 22, 2023
Share this Article
Facebook Twitter Email Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

SUBSCRIBE NOW

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]

HOT NEWS

Earth is hurtling into a new region of interstellar space. What now?

Space Flight
February 15, 2023

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered…

October 27, 2024

NASA Says Spacecraft Crash Test Successfully Changes Asteroid’s Orbit

CAPE CANAVERAL, Fla. (AP) — A spacecraft that plowed into a small, harmless asteroid millions…

October 11, 2022

World-Saving Spacecraft Passes Test

NASA says its DART spacecraft successfully shifted the path of an asteroid. For us earthlings,…

October 11, 2022

YOU MAY ALSO LIKE

Is that this black gap jet making stars explode?

Again to Article Listing Greater than twice the anticipated quantity of novae have been discovered popping off alongside the jet…

Cosmology
October 27, 2024

How Supersymmetry Saved String Concept

String concept, like most revolutions, had humble origins. It began all the way in which again within the 1960’s as…

Cosmology
December 23, 2023

Utilizing Good Supplies To Deploy A Darkish Age Explorer

One of the important constraints on the dimensions of objects positioned into orbit is the dimensions of the fairing used…

Cosmology
December 23, 2023

The Environment of an Exoplanet Reveals Secrets and techniques About Its Floor

As astronomers have begun to collect information on the atmospheres of planets, we’re studying about their compositions and evolution. Thick…

Cosmology
December 23, 2023
We use our own and third-party cookies to improve our services, personalise your advertising and remember your preferences.
  • Jobs Board
  • About Us
  • Contact Us
  • Privacy Policy
  • Exclusives
  • Learn How
  • Support
  • Solutions
  • Terms And Conditions
  • Editorial Policy
  • Marketing Solutions
  • Industry Intelligence

Follow US: 

Space Science Digital

Welcome to spacescience.digital, A source for the latest news and developments in the exciting field of space science. Our blog covers a wide range of topics, from the latest space missions and discoveries to updates on technology and scientific breakthroughs. We are passionate about sharing the wonders of the universe with our readers and providing them with engaging and informative content. Join us on this fascinating journey as we explore the mysteries of space and the frontiers of human knowledge.

© 2024 Space Science Digital. All Rights Reserved.

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?